STRUCTURAL CALCULATIONS

for

SOUTH RIVER ROAD OVER ALBEE BROOK BRIDGE NO. C-05-027 (0ET) CHARLEMONT, MASSACHUSETTS

Prepared for:

TOWN OF CHARLEMONT

STRUCTURAL CALCULATIONS NOVEMBER 2024

Prepared by:

63 Kendrick Street Needham, MA 02494

PAGE OF CALC BY TRS
CHECK BY DCH
DATE OCT 2024

INDEX TO CALCULATIONS

<u>PAGI</u>
EXISTING PLANS
VIRTIS INPUT FOR BEAM RATINGS
GENERAL INFORMATION
DEAD LOADS8-16
LIVE LOAD DISTRIBUTION FACTORS
ALTERNATE LIVE LOAD DISTRIBUTION FACTORS
DETERIORATION
SECTION PROPERTIES
SHEAR CONNECTORS 51-60
VIRTIS OUTPUT FOR BEAM RATINGS

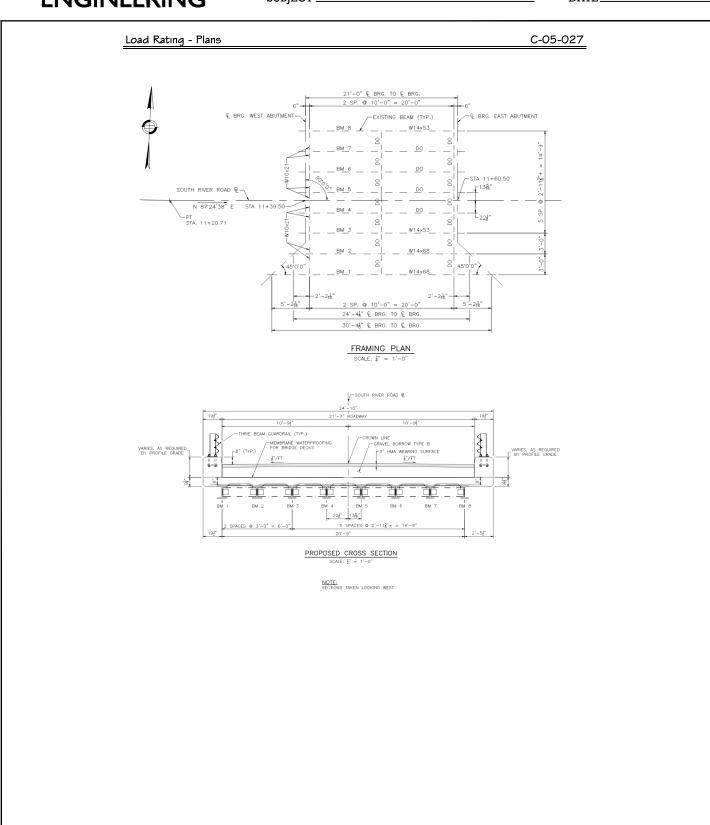
PAGE 2 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Plans	C-05-027
<u>Plans</u>	
<u>1 10(15)</u>	



PAGE 3 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

CLIENT _	TOWN OF CHARLEMONT
PROIECT	SOUTH RIVER ROAD
•	o. C-05-027
_	STRUCTURAL CALCS.

PAGE 4 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating	- General Information	C-05-027
	General Information	<u>]</u>

PAGE 5 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - General Information

C-05-027

References:

- 1) AASHTO Standard Specifications, 17th Edition, 2002
- 2) MassDOT Bridge Manual 2024
- 3) 1995 Mass Highway Bridge Manual
- 4) AISC Steel Construction Manual, 15th Edition, 2017
- 5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata
- 6) AASHTO Manual for Bridge Evaluation, 3rd Edition, 2018 thru 2022 Interim

Bridge Geometry

```
Beam | Span =
                     30.34 ft
   Beam 2 Span =
                     24.34 ft
Beams 3-8 Span =
                      21.0 ft
Beam I-2 Shape =
                     W14x68
Beam 3-8 Shape =
                     W14x53
     W14x68 t_f = 0.060 ft =
                                  0.720 in
     W14x53 t_f = 0.055 ft =
                                  0.660 in
    W14x68 w_{tf} =
                     10.00 in
    W14x53 w_{tf} =
                      8.06 in
     W14x68 t_w =
                     0.415 in
     WI4x53 t_w =
                     0.370 in
     W14x68A =
                      20.0 m<sup>2</sup>
     W14x53 A =
                     15.6 m<sup>2</sup>
   No. of Beams =
                         8
```

```
Beam 1-2 Spacing =
                                   3.00 ft
              Beam 3 Spacing =
                                    2.97 ft
            Beam 4-8 Spacing =
                                    2.95 ft
             Beam | Overhang =
                                    1.63 ft
             Beam 8 Overhang =
                                   2.46 ft
     Beam I Overhang Thickness=
                                   0.813 ft
     Beam 8 Overhang Thickness=
                                   0.807 ft
                                   0.083 ft
Add'l. Deck Depth at Overhang =
```


PAGE 6 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - General Information				C-05-027	
Roadway Width = Safety Curb Width =	21.6 ft 1.63 ft				
Wearing Surface Depth = Deck Thickness =	0.250 ft 0.667 ft				
Haunch Height =	1.00 in				
Diaphragm Shape = Diaphragm Cut Length =	W10x21 0.042 ft		*Assuming Dia	aphragms are cut 0.5"	
				ing beam web allowing for connection	
Railing Type =	Thrie Beam (Guardrail			
No. of Rail Posts South =	6	3041011411			
Railing Length South =	31.3 ft				
Post Height =	2.00 ft				
C 1 W/W	1 62 0				
Curb Width = Height of Curb above WS =	1.63 ft 0.667 ft				
West Crown Depth =	1.15 ft				
West Curb Depth =	1.03 ft				
East Crown Depth =	1.02 ft				
East Curb Depth =	0.91 ft				
WS Depth =	0.250 ft				
Beam I $d_e =$	-0.017 ft =	1.63 ft -	1.63 ft -	0.017 ft	
Beam 8 d_e =	0.818 ft =	2.46 ft -	1.63 ft -	0.015 ft	

PAGE 7 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - General Information	C-05-027

Material Properties

Unit Weights

Concrete = 0.150 kcf (1) 3.3.6 Wearing Surface = 0.150 kcf (1) 3.3.6 Gravel Borrow = 0.120 kcf (1) 3.3.6 Steel = 0.490 kcf (1) 3.3.6

Steel Member Weights

 $W \mid 4x53 = 0.053 \text{ klf}$ (4) 1-25 $W \mid 4x68 = 0.068 \text{ klf}$ (4) 1-25 $W \mid 0x2 \mid = 0.021 \text{ klf}$

Material Properties

 $f'_{c,deck} =$ 5.00 ksi (6) 6B.5.2.1-1 n = 6.76

 $E_B = 29,000 \text{ ks}$ (5) 6.4.1 $E_D = 429 \text{ ks}$ (5) C5.4.2.4-2

 $F_{y,1960 \text{ steel}} = 33 \text{ ks}$ (6) 6B.5.2.1-1

CLIENT	TOWN OF CHARLEMONT
PROIECT	SOUTH RIVER ROAD
•	o. C-05-027
_	STRUCTURAL CALCS.

PAGE 8 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Dead Loads		C-05-027
	<u>Dead Loads</u>	

PAGE 9 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Dead Loads

C-05-027

References:

- 1) AASHTO Standard Specifications, 17th Edition, 2002
- 2) MassDOT Bridge Manual 2024
- 3) 1995 Mass Highway Bridge Manual
- 4) AISC Steel Construction Manual, 15th Edition, 2017
- 5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata

Narrative:

Calculate proposed dead loads. Dead loads distributed per (2) 3.5.3 and 3.5.4.

Summary:

<u>Beam</u>	<u>DC I</u>	DC2	DW	BRR DC I
1	0.429 klf	0.573 klf	O.IOI klf	0.048 klf
2	0.384 klf	0.452 klf	O.IOI klf	0.016 klf
3	0.365 klf	0.452 klf	O.IOI klf	0.015 klf
4	0.363 klf	0.452 klf	O.IOI klf	0.015 klf
5	0.363 klf	0.452 klf	O.IOI klf	0.015 klf
6	0.363 klf	0.452 klf	O.IOI klf	0.015 klf
7	0.363 klf	0.452 klf	O.IOI klf	0.015 klf
8	0.511 klf	0.583 klf	0.101 klf	0.064 klf

Bridge Geometry

No. of Beams =	8
Beam 1-3 Spacing =	3.00 ft
Beam 3-8 Spacina =	2.95 ft

Beam I Span = 30.3 ft Beam 2 Span = 24.3 ft Beams 3-8 Span = 21.0 ft

Beam | Trib. Width = 3.13 ft = 1.63 ft + 1.50 ft Beam 2 Trib. Width = 3.00 ft = 3.00 ft Beam 3 Trib. Width = 2.97 ft = 1.50 ft + 1.47 ft Beam 4-7 Trib. Width = 2.95 ft = 2.95 ft Beam 8 Trib. Width = 3.93 ft = 1.47 ft + 2.46 ft

PAGE 10 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Dead Loads				C-05-027
Calculate DC I (Non-Composite DL) L	_oads			
Concrete Deck				
Unit Weight = Depth = Load =	0.150 kcf 0.667 ft 0.100 ksf			
<u>Haunch</u>				
Beam I Unit Weight =	0.150 kcf 10.00 in 11.00 in 1.00 in 0.076 ft ² = 0.011 klf =	(11.00 in x 0.076 ft ² x	*assuming add an inch on inside to account for haunch shape I.00 in)/ I44 O.150 kcf	
Beam 8				
Unit Weight = $W14x53 w_{tf} = Haunch Width = Haunch Height = Haunch Area = U03d = W14x53 w_{tf} = W14x53 w_$	0.150 kcf 8.06 in 9.06 in 1.00 in 0.063 ft ² = 0.009 klf =	(9.06 in x	*assuming add an inch on inside to account for haunch shape I.00 in)/ I44	
Beam 2	0.003 kii –	0.065 11 2	0.130 KCI	
Unit Weight = $WI 4x68 w_{tf} = Haunch Width = Haunch Height = Haunch Area = Load = $	0.150 kcf 10.00 in 12.00 in 1.00 in 0.083 ft ² = 0.013 klf =	(12.00 in x 0.083 ft ² x	*assuming add an inch on each si to account for haunch shape I.00 in)/ I44 0.150 kcf	de
Beam 3-7				
Unit Weight = $W14x53 W_{tf} = Haunch Width = Haunch Height = Haunch Area = $	0.150 kcf 8.06 in 10.06 in 1.00 in 0.070 ft ² =	(10.06 in x	*assuming add an inch on each si to account for haunch shape 1.00 in)/ 144	de

Load = $0.010 \text{ klf} = 0.070 \text{ ft}^2 \times 0.150 \text{ kcf}$

PAGE | OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Dead Loads					C-05-027
Overhein					
<u>Overhang</u> Beam I					
Overhang Length =	1.63 ft				
Depth of Addt. Conc. =	0.146 ft =	0.813 ft -	0.667 ft		
Unit Weight =	0.150 kcf	0.0 . 0	0,007 17		
Load =	0.036 klf				
Beam 8	0.000 14.				
Overhang Length =	2.46 ft				
Depth of Addt. Conc. =	0.141 ft =	0.807 ft -	0.667 ft		
Unit Weight =	0.150 kcf				
Load =	0.052 klf				
<u>Gırder Self Weight</u>					
Beam 1-2 =	0.068 klf				
Beam 3-8 =	0.053 klf				
Diaphragm Self Weight					
WIOx2I =	0.021 klf				
Cut Length Int. Beams =	0.021 kil 0.083 ft =	2 x	0.042 ft		
Cut Length Ext. Beams =	0.003 ft =	Z X	0.042 11		
Beam Diaphragm Length =	1.46 ft =	3.13 ft -	1.63 ft -	0.042 ft	
Beam 2 Diaphragm Length =	2.92 ft =	3.73 ft -	0.083 ft	0,072 11	
Beam 3 Diaphragm Length =	2.89 ft =	2.97 ft -	0.083 ft		
Beam 4-7 Diaphragm Length =	2.86 ft =	2.95 ft -	0.083 ft		
Beam 8 Diaphragm Length =	1.43 ft =	3.93 ft -	2.46 ft -	0.042 ft	
No. of Diaphragms =	3	3.00.0		3.0 .2	
Beam Diaphragm Load =	0.031 k =	1.46 ft x	0.021 klf		
Beam 2 Diaphragm Load =	0.061 k =	2.92 ft x	0.021 klf		
Beam 3 Diaphragm Load =	0.061 k =	2.89 ft x	0.021 klf		
Beam 4-7 Diaphragm Load =	0.060 k =	2.86 ft x	0.021 klf		
Beam 8 Diaphragm Load =	0.030 k =	1.43 ft x	0.021 klf		
	4.00				
Angles Qty. =	4.00				

Angle Length = 0.500 ft

Angle Weight = 0.025 k = 0.50 ft x | 12.30 plf x

4.00/

1,000

Load Rating - Dead Loads

C-05-027

*Add 5% to total weight for connection	ons exterior di	aphragms only b	nave 2 angles	
Beam Diaphragm Tot.Load =	0.045 k =	(0.031 k+	0.012 k) x	1.050
Beam 2 Diaphragm Tot Load =	0.090 k =	(0.061 k +	0.025 k) x	1.050
Beam 3 Diaphragm Tot. Load =	0.090 k =	(0.061 k +	0.025 k) x	1.050
Beam 4-7 Diaphragm Tot. Load =	0.089 k =	(0.060 k +	0.025 k) x	1.050
Beam 8 Diaphragm Tot. Load =	0.044 k =	(0.030 k +	0.012 k) x	1.050

Table showing breakdown of each beams DCI loading. Load units in klf

Beam #	1	2	3	4
Trib Width	3.13 ft	3.00 ft	2.97 ft	2.95 ft
Span Length	30.3 ft	24.3 ft	21.0 ft	21.0 ft
Deck	0.313 klf	0.300 klf	0.297 klf	0.295 klf
Haunch	0.011 klf	0.013 klf	0.010 klf	0.010 klf
Overhang	0.036 klf	n/a	n/a	n/a
Gırder Weight	0.068 klf	0.068 klf	0.053 klf	0.053 klf
Diaphragm Weight	0.001 klf	0.004 klf	0.004 klf	0.004 klf
DCI =	0.429 klf	0.384 klf	0.365 klf	0.363 klf
Beam #	5	6	7	8
Trib Width	2.95 ft	2.95 ft	2.95 ft	3.93 ft
Span Lenath	21 O ft	21 O ft	21 O ft	21 O ft

PAGE 13 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Dead Loads

C-05-027

Calculate DC2 (Superimposed Load) Loads

Railing

Railing = Thrie Beam Guardrail
No. of Rail Posts South = 6.00

Railing Length South = 31.3 ft
Post Height = 2.00 ft

Post Unit Weight = 0.015 klf

Total Post Weight = 0.180 k = 0.015 klf x = 2.00 ft x 6.00

Post Linear Weight = 0.006 klf = 0.180 k/ 31.3 ft

Thrie Beam Weight = 0.011 klf

Railing Weight = 0.017 klf = 0.011 klf + 0.006

15% Additional Weight for Connection = 0.003 klf = 0.017 klf x 0.150

Total Railing Weight = 0.019 klf = 0.003 klf + 0.017 klf

Safety Curb

Safety Curb assumed to be rectangle with dimensions using the average height of the curb through the span

Avg. Gravel Depth at Curb = 0.97 ft = (1.03 ft + 0.91 ft)/ 2.00

 $\label{eq:avg_equation} \text{Avg. Curb Height} = \quad \text{I.89 ft} = \quad \text{O.67 ft} + \quad \text{O.25 ft} + \quad \text{O.97 ft}$

Unit Weight = 0.150 kcf

Curb Width = 1.63 ft

Gravel Borrow Type B

No. of Beams = 8 Unit Weight = 0.120 kcf

West Crown Depth = 1.15 ft

West Curb Depth = 1.03 ft

East Crown Depth = 1.02 ft

East Curb Deth = 0.91 ft

East Curb Deth = 0.91 ft

Avg. Crown Depth = 1.08 ft = (1.15 ft + 1.02 ft)/ 2.00 Avg. Curb Depth = 0.97 ft = (1.03 ft + 0.91 ft)/ 2.00

Avg. Depth = 1.03 ft = 1.08 ft + 0.97 ft/ 2.00

Rdwy Width = 21.6 ft

Gravel Load = 2.66 klf = 1.03 ft x 21.6 ft x 0.120 kcf

^{*}Interior beams have load from both railings and curbs

Beam #	Railing Load	Curb Load	Gravel Load	Total DC2 Load
Beam I	0.019 klf	0.460 klf	2.66 klf	3.140 klf
Beam 2	0.039 klf	0.920 klf	2.66 klf	3.619 klf
Beam 3	0.039 klf	0.920 klf	2.66 klf	3.619 klf
Beam 4-7	0.039 klf	0.920 klf	2.66 klf	3.619 klf
Beam 8	0.019 klf	0.460 klf	2.66 klf	3.140 klf

PAGE | 4 OF | 68 | CALC BY | TRS | CHECK BY | DCH | DATE | OCT | 2024

Load Rating - Dead Loads

C-05-027

Calculate and Distribute DW Loads

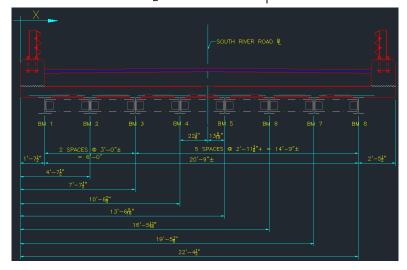
Wearing Surface

No. of Beams = 8WS Unit Wt. = 0.150 kcf

Rdwy Width = 21.6 ftWS Depth = 0.250 ft

WS Load = $0.101 \text{ klf} = 0.150 \text{ kcf} \times 21.58 \text{ ft} \times 0.25 \text{ ft} \times 0.125$

DW Load = 0.101 klf


Distribute DC2 Loads

Per (2) distribute DC2 loads to beams using the pile cap method to exterior stems. DC2 loads shall be distributed to interior stems equally.

Stems will be treated as individual beams, where their sums will equal the load applied to the NEXTD beams for design.

$$CG = rac{\Sigma x A}{\Sigma A}$$
 x= horizontal distance from left edge of bridge deck A= Area of girder section

Beam	X	Α	x*A
Beam I	1.625	1.000	1.625
Beam 2	4.625	1.000	4.625
Beam 3	7.625	1.000	7.625
Beam 4	10.575	1.000	10.58
Beam 5	13.525	1.000	13.53
Beam 6	16.475	1.000	16.48
Beam 7	19.425	1.000	19.43
Beam 8	22.375	1.000	22.38
	Σ =	8.000	96.250

PAGE 15 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

1024	Patina	Dead	ande	

C-05-027

CG = 12.03 ft *from the left edge of bridge deck

 $N_b =$ number of beams $\frac{1}{N_b} + \frac{X_{ext} \sum e}{\sum x^2}$ eccentricity of load from C.G.

x = horizontal distance from C.G. of pattern of beams to each beam $X_{\text{ext}} =$ horizontal dist from C.G. of pattern of beams to exterior beam

CG = 12.03 ft *from the left edge of bridge deck

Beam 1 Overhang = 1.63 ft
Beam 8 Overhang = 2.46 ft
Out to Out Dist. 24.83 ft

 $x_{Beam I} = 10.41 \text{ ft}$ (CL Beam I to CG Beam Group)

 $x_{Beam2} = 7.4 I \text{ ft}$ (CL Beam 2 to CG Beam Group) $x_{Beam3} = 4.4 I \text{ ft}$ (CL Beam 3 to CG Beam Group)

 $x_{Beam4} = 1.46 \text{ ft}$ (CL Beam 4 to CG Beam Group) $x_{Beam5} = -1.49 \text{ ft}$ (CL Beam 5 to CG Beam Group)

 $x_{BeamG} = -4.44 \text{ ft}$ (CL Beam 6 to CG Beam Group) $x_{Beam7} = -7.39 \text{ ft}$ (CL Beam 7 to CG Beam Group)

 $x_{Beam8} = -10.34 \text{ ft}$ (CL Beam 8 to CG Beam Group)

PAGE 16 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Dead Loads			C-05
V			
$x^2_{Beam I} =$	108.29	x _{Beam I} =	10.41
$\chi^2_{Beam2} =$	54.85	x _{Beam2} =	7.41
$x^2_{Beam3} =$	19.42	x _{Beam3} =	4.41
$x^2_{Beam4} =$	2.12	x _{Beam4} =	1.46
$x^2_{Beam5} =$		x _{Beam5} =	-1.49
$\chi^2_{Beam6} =$	19.75	X _{BeamG} =	-4.44
$x^2_{Beam7} =$	54.67	льеать Х _{Веат} 7 =	-7.39
$ \begin{array}{c} $	106.99		-10.34
x Beam8 - $\sum x^2 =$	368.32	x _{Beam8} =	-10.54
$x_{Beam I} / \sum x^2 =$	0.0283		
$x_{Beam8} / \sum x^2 =$	0.0281		
x _{Веат} 8 / Z x —	0.0201		
South Railing e =	11.22 ft		*Assuming Railing CG @ Center of Cur
North Railing e =	11.99 ft		
-			
South Curb e =	11.22 ft		1 V V
North Curb e =	11.99 ft		$\frac{1}{N_b} + \frac{X_{ext} \sum e}{\sum x^2}$
Gravel e =	0.385 ft		$N_b \sum x^2$
Beam South Railing DF =	0.442		
Beam 8 North Railing DF =	0.462		
Beam 2-7 Railing DF =	0.125		
5			
Beam South Curb DF =	0.442		
Beam 8 North Curb DF =	0.462		
Beam 2-7 Curb DF =	0.125		
Beam Gravel DF =	0.136		
Beam 8 Gravel DF =	0.136		
Beam 2-7 Gravel DF =	0.125		
Beam #	Railing Load	DF	Factored DC2 Load
DC2 Beam 1	0.019 klf	0.442	0.009 klf
DC2 Beam 2-7 DC2 Beam 8		0.125 0.462	0.005 klf 0.009 klf
DCZ DEAIII O	0.010 KII	0.462	J 0.000 KII
Beam #	Curb Load	DF	Factored DC2 Load
DC2 Beam 1	0.460 klf	0.442	0.203 klf
DC2 Beam 2-7		0.125	0.115 klf
DC2 Beam 8	0.460 klf	0.462	0.212 klf
	l -		1
Beam #		DF 0.130	Factored DC2 Load
DC2 Beam 1	2.660 klf	0.136	0.361 klf

0.125

0.136

0.333 klf

0.361 klf

2.660 klf

2.660 klf

DC2 Beam 2-7

DC2 Beam 8

CLIENT	TOWN OF CHARLEMONT
PROIECT	SOUTH RIVER ROAD
•	o. C-05-027
	STRUCTURAL CALCS.

PAGE 17 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Loads	C-05-027
Live Load Distribution Factors	

PAGE 18 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

References:

- 1) AASHTO Standard Specifications, 17th Edition, 2002
- 2) MassDOT Bridge Manual 2024
- 3) 1995 Mass Highway Bridge Manual
- 4) AISC Steel Construction Manual, 15th Edition, 2017
- 5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata

Narrative:

Calculate live load distribution factors per (2) and (5) Section 3.5.4.

Summary:

Beam	LLDF M	LLDF V	LLDF M FAT.	LLDF V FAT.	LLDF DEFLECTION
1	0.333	0.333	0.278	0.278	0.250
2	0.346	0.480	0.248	0.400	0.250
3	0.349	0.479	0.253	0.399	0.250
4	0.347	0.478	0.252	0.398	0.250
5	0.347	0.478	0.252	0.398	0.250
6	0.347	0.478	0.252	0.398	0.250
7	0.347	0.478	0.252	0.398	0.250
8	0.365	0.365	0.304	0.304	0.250

Geometry:

Spacing, S Beam 1-2 =	3.00 ft
Spacing, S Beam 3 =	2.97 ft
Spacing, S Beam 4-8 =	2.95 ft
$t_s =$	0.67 ft
Span Length, L Beam 1 =	30.3 ft
Span Length, L Beam 2 =	24.3 ft
Span Length, L Beam 3-8 =	21.0 ft
$N_b =$	8
Roadway Width =	21.6 ft

Number of Lanes =

PAGE 19 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

Beam Geometry:

Beam I-2 Type = W14x68 Beam 1-2 A = 20.0 in² Beam I-2 Depth = 14.0 m Beam I-2 $Y_t =$ 7.00 in Beam $1-2 I_x =$ 722 ın⁴ Beam 3-8 Type = W14x53 Beam 3-8 A = 15.6 m² Beam 3-8 Depth = 13.9 m Beam 3-8 $Y_t =$ 6.95 ın Beam 3-8 I_x = 541 ın**4**

Calculate K_a:

Beam I-2 $e_a =$ 7.00 in 11.0 m (8.00 in x 0.5) +Beam 3 e_q = 11.0 m (8.00 in x 0.5) +6.95 in Beam 4-8 $e_a =$ 11.0 ın 0.5) +6.95 in (8.00 in x 6.76 29000 ksi/ 4291 ksi (5) 4.6.2.2.1-2 Beam 1-2 $K_a =$ (5) 4.6.2.2.1-1 21,234 m⁴ Beam 3-8 K_a = 16,297 ın**4** (5) 4.6.2.2.1-1

PAGE 20 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

Moment for Interior Beams:

Per (2) - Section 3.5.3.849, Distribution of live load to interior beams shall be calculated using (5) - Section 4.6.2.2.2

Applicability

$$3.5 \le S \le 16.0$$

 $4.5 \le t_s \le 12.0$
 $20 \le L \le 240$
 $N_b \ge 4$
 $10,000 \le K_g \le 7,000,000$

(5) Table 4.6.2.2.2b-1

	Beam 2	Beam 2 Check
s _		
S =	3.00 ft	NO GOOD
$t_s =$	8.00 ın	OKAY
L =	24.34 ft	OKAY
N _♭ =	8	OKAY
$K_g =$	21,234 ın ⁴	OKAY
	Beam 3	Beam 3-7 Check
S =	2.97 ft	NO GOOD
t _s =	8.00 ın	OKAY
L =	21.0 ft	OKAY
N _♭ =	8	OKAY
$K_g =$	16,297 ın 4	OKAY
	Beam 4-7	Beam 3-7 Check
5 =	2.95 ft	NO GOOD
$t_s =$	8.00 ın	OKAY
L =	21.0 ft	OKAY
$N_b =$	8	OKAY
$K_g =$	16,297 ın 4	OKAY

The existing beam spacing is below the minimum beam spacing specified in the Range of Applicability for live load distribution factors (LLDFs) for shear and moment of interior beams, as given in Tables 4.6.2.2.2b-1 and 4.6.2.2.3a-1. Consequently, an alternate analysis is performed further on by theoretically increasing the beam spacing to the minimum value specified in these tables. By demonstrating that the beams are adequate at this larger spacing, which falls within the range of applicability, it is shown that they will be adequate for the actual smaller spacing. This is because the distribution factors would be lower in the real conditions at the smaller spacing. The interior beams were checked to rate above statutory with the alternate distribution factors. The results presented use the distribution factors from the actual beam spacing.

PAGE 21 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

(4) Table 4.6.2.2.2b-1

Concrete Deck or	a, e, k and also i, j	One Design Lane Loaded:	$3.5 \le S \le 16.0$
Filled Grid, Partially	if sufficiently	$(c)^{0.4}(c)^{0.3}(K)^{0.1}$	$4.5 \le t_s \le 12.0$
Filled Grid, or	connected to act	$0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12.0Lt_s^3}\right)^{0.1}$	$20 \le L \le 240$
Unfilled Grid Deck	as a unit	$(14) (L) (12.0Lt_s^3)$	$N_b \ge 4$
Composite with		Two or More Design Lanes Loaded:	$10,000 \le K_g \le$
Reinforced Concrete		$(c)^{0.6}(c)^{0.2}(K)^{0.1}$	7,000,000
Slab on Steel or		$0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{12.0 Lt_s^3}\right)^{0.1}$	
Concrete Beams;		$(9.5) (L) (12.0 Lt_s^3)$	
Concrete T-Beams, T-		use lesser of the values obtained from the	$N_b = 3$
and Double T-Sections		equation above with $N_b = 3$ or the lever rule	

Beam 2

One Lane Loaded

 $DF_{Mom.Beam2} = 0.297$

0.06 +

 $\left(\frac{3.00 \text{ ft}}{14}\right)^{0.4} \left(\frac{3.0}{24.3}\right)^{0.4}$

 $\begin{array}{c}
3.00 \text{ ft} \\
24.34 \text{ ft}
\end{array}$ $\begin{array}{c}
21,234 \text{ in}^4 \\
24.34 \text{ ft x}
\end{array}$ $\begin{array}{c}
6.00 \text{ in} \\
3
\end{array}$

Two or More Lanes Loaded

 $DF_{Mom.Beam2} = 0.346$

0.075 -

 $\begin{pmatrix} \frac{3.00 \text{ ft}}{9.5} \end{pmatrix}^{0.6} \begin{pmatrix} \frac{3.00 \text{ ft}}{24.34 \text{ ft}} \end{pmatrix}^{0.2} \\ \frac{21,234 \text{ in}^4}{12.0 \text{ x}} & \frac{24.34 \text{ ft} \text{ x}}{24.34 \text{ ft} \text{ x}} & \frac{8.00 \text{ in}}{3} \end{pmatrix}^{0}$

One Lane Loaded

 $DF_{Mom.Beam2} = 0.297$

Two or More Lanes Loaded

 $DF_{Mom.Beam2} = 0.346$

Critical Factor

 $DF_{Mom.Beam2} = 0.346$

PAGE 22 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors C-05-027 Beam 3 One Lane Loaded 0.06 + $\left(\frac{2.97 \text{ ft}}{14} \right)^{0.4} \left(\frac{2.97 \text{ ft}}{21.00 \text{ ft}} \right)^{0.3}$ $\left(\frac{16,297 \text{ in}^4}{12.0 \text{ x}} \right)^{16.997 \text{ in}^4}$ $DF_{Mom,Beam3} =$ 0.303 Two or More Lanes Loaded $\left(\frac{2.97 \text{ ft}}{9.5}\right)^{0.6} \left(\frac{2.97 \text{ ft}}{21.00 \text{ ft}}\right)^{0.2} \\ \left(\frac{16,297 \text{ in}^4}{12.0 \text{ x}}\right)^{0.1}$ 0.349 DF_{Mom,Beam3}= One Lane Loaded DF_{Mom Beam3}= 0.303 Two or More Lanes Loaded DF_{Mom Beam3}= 0.349 Critical Factor $DF_{Mom,Beam3} =$ 0.349 Beam 4-7 One Lane Loaded 0.06 + $\left(\frac{2.95 \text{ ft}}{14} \right)^{0.4} \left(\frac{2.95 \text{ ft}}{21.00 \text{ ft}} \right)^{0.3}$ $\times \left(\frac{16,297 \text{ in}^4}{12.0 \text{ x}} \right)^{0.4}$ $\times \left(\frac{16,297 \text{ in}^4}{12.0 \text{ x}} \right)^{0.3}$ $\mathsf{DF}_{\mathsf{Mom.Beam4-7}} =$ 0.302 Two or More Lanes Loaded 0.075 + $\left(\frac{2.95 \text{ ft}}{9.5}\right)^{0.6} \left(\frac{2.95 \text{ ft}}{2 \cdot 0.00 \text{ ft}}\right)^{0.2}$ × $\left(\frac{16,297 \text{ in}^4}{12.0 \times 21.00 \text{ ft} \times 6.00 \text{ in}}\right)^{3}$ $DF_{Mom.Beam4-7} =$ 0.347 One Lane Loaded DF_{Mom Beam4-7}= 0.302 Two or More Lanes Loaded DF_{Mom Beam4-7}= 0.347 Critical Factor $DF_{Mom.Beam4-7} =$ 0.347

PAGE 23 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

Shear for Interior Beams:

Per (2) - Section 3.5.3.8\$9, Distribution of live load to interior beams shall be calculated using (5) - Section 4.6.2.2.2

Applicability

(5) Table 4.6.2.2.3a-1

 $3.5 \le S \le 16.0$ $20 \le L \le 240$ $4.5 \le t_s \le 12.0$ $N_b \ge 4$

	Beam 2	Beam 2 Check		
S =	3.00 ft	NO GOOD		
t _s =	8.00 ft	OKAY		
L =	24.34 ft	OKAY		
N _♭ =	8.00 ft	OKAY		
	Beam 3	Beam 3-7 Check		
S =	2.97 ft	NO GOOD		
t _s =	8.00 ft	OKAY		
L =	21.00 ft	OKAY		
$N_b =$	8.00 ft	OKAY		
	Beam 3-7	Beam 3-7 Check		
5 =	2.95 ft	NO GOOD		
$t_s =$	8.00 ft	OKAY		
L =	21.00 ft	OKAY		
$N_b =$	8.00 ft	OKAY		

(5) Table 4.6.2.2.3a-1

Concrete Deck or Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete	a, e, k and also i, j if sufficiently connected to act as a unit	$0.36 + \frac{S}{25.0}$	$0.2 + \frac{S}{12} - \left(\frac{S}{35}\right)^{2.0}$	$3.5 \le S \le 16.0$ $20 \le L \le 240$ $4.5 \le t_s \le 12.0$ $N_b \ge 4$
Beams; Concrete T-Beams, T- and Double T-Sections		Lever Rule	Lever Rule	$N_b = 3$

CLIENT TOWN OF CHARLEMONT SOUTH RIVER ROAD PROIECT ____ BRIDGE NO. C-05-027 SUBJECT STRUCTURAL CALCS.

PAGE 24 OF 68 CALC BY TRS CHECK BY DCH DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

Beam 2

One Lane Loaded

0.36 + $DF_{Shear,Beam2} =$ 0.480

Two or More Lanes Loaded

 $\left(\frac{3.00 \text{ ft}}{12}\right) \qquad \left(\frac{3.00 \text{ ft}}{35}\right)^{2.0}$ 0.2 + DF_{Shear,Beam2} = 0.443

One Lane Loaded

 $DF_{Shear,Beam2} =$ 0.480

Two or More Lanes Loaded

DF_{Shear,Beam2} = 0.443

Critical Factor

 $\mathrm{DF}_{\mathrm{Shear},\mathrm{Beam2}} =$ 0.480

Beam 3

One Lane Loaded

0.36 + $\mathsf{DF}_{\mathsf{Shear},\mathsf{Beam3}} =$ 0.479

Two or More Lanes Loaded

 $\left(\frac{2.97 \text{ ft}}{12}\right) \qquad \left(\frac{2.97 \text{ ft}}{35}\right)^{2.0}$ 0.2 + DF_{Shear,Beam3} = 0.441

One Lane Loaded

 $\mathsf{DF}_{\mathsf{Shear},\mathsf{Beam3}} =$ 0.479

Two or More Lanes Loaded

DF_{Shear,Beam3} = 0.441

Critical Factor

DF_{Shear,Beam3} = 0.479

CLIENT TOWN OF CHARLEMONT SOUTH RIVER ROAD PROJECT ___ BRIDGE NO. <u>C-05-02</u>7 SUBJECT STRUCTURAL CALCS.

PAGE 25 OF 68 CALC BY TRS CHECK BY DCH DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

<u>Beam 4-7</u>

One Lane Loaded

 $DF_{Shear,Beam4-7} =$

0.478

0.36 +

Two or More Lanes Loaded

 $DF_{Shear,Beam4-7} =$

0.439

0.2 +

 $\left(\frac{2.95 \text{ ft}}{12}\right) \qquad \left(\frac{2.95 \text{ ft}}{35}\right)^{2.0}$

One Lane Loaded

 ${\sf DF}_{\sf Shear,Beam4-7} =$

0.478

Two or More Lanes Loaded

 $DF_{Shear,Beam4-7} =$

0.439

Critical Factor

 $DF_{Shear,Beam4-7} =$

0.478

Moment for Exterior Beams:

Per (2) - Section 3.5.3.10, Distribution of live load to exterior beams under safety curb or barrier shall be calculated using (4) - Section 4.6.2.2.2

Per (4) - Section 4.6.2.2.2d - Exterior beam distribution factors shall be taken as the larger of those calculated using Table 4.6.2.2.2d-I, or the pile cap analogy as outlined in C4.6.2.2.2d

Applicability

 $-1.0 \le d_a \le 5.5$

Beam I $d_e =$ -0.017 ft

OKAY

Beam $4 d_e =$

0.818 ft

OKAY

Concrete Deck or Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T-Beams, T- and Double T-

Sections

a, e, k and also i, j if sufficiently connected to act as a unit

Lever Rule

 $-1.0 \le d_e \le 5.5$ $g = e g_{interior}$ $e = 0.77 + \frac{d_e}{9.1}$ $N_b = 3$ use lesser of the values obtained from the equation above with $N_b = 3$ or

the lever rule

(5) Table 4.6.2.2.2d-1

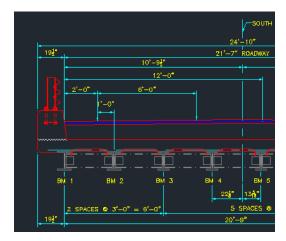
PAGE 26 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors


C-05-027

0.5

Beam I

One Lane Loaded

Lever Rule

DI = 2.00 ft

S = 3.00 ft

 $DF_{Mom,Beam I} = 0.167 = (1 - (2.00 ft/ 3.00 ft)) x$

Two or More Lanes Loaded

Beam | $d_e = -0.017 \text{ ft}$

e = 0.768 ft = 0.77 + -(0.017 ft/ 9.1)

g,interior = 0.346

 $DF_{Mom,Beam1} = 0.266 = 0.768 \text{ ft x}$ 0.346

"Rigid Superstructure" Pile Cap Analogy

 $CG = rac{\Sigma x A}{\Sigma A}$ x= horizontal distance from left edge of bridge deck A= Area of girder section

Beam	×	Α	x*A
Beam I	1.625	0.139	0.226
Beam 2	4.625	0.139	0.642
Beam 3	7.625	0.139	1.059
Beam 4	10.575	0.139	1.47
Beam 5	13.525	0.139	1.88
Beam 6	16.475	0.139	2.29
Beam 7	19.425	0.139	2.70
Beam 8	22.375	0.139	3.11
	Σ =	1.111	13.368

CG = 12.03 ft *from the left edge of bridge deck

PAGE 27 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

				1 .	$\frac{X_{ext} \sum e}{\sum x^2}$
$N_b =$	number of beams			$\frac{1}{N_h}$	$\sum x^2$
e =	eccentricity of load	from C.G.		Ь	_
χ =	horizontal distance	from C.G. of patter	n of beams to each b	eam	
$X_{ext} =$	horizontal dist from	C.G. of pattern of	beams to exterior bea	am	
CG =	12.03 ft	*from the left ea	lge of bridge deck		
Beam Overhang =	1.63 ft				
Beam 8 Overhang =	2.46 ft				
Out to Out Dist.	24.83 ft				
x _{Beam I} =	10.41 ft	(CL Beam I to C	CG Beam Group)		
$x_{Beam2} =$	7.41 ft	(CL Beam 2 to C	CG Beam Group)		
x _{Beam3} =	4.41 ft	(CL Beam 3 to C	CG Beam Group)		
x _{Beam4} =	1.46 ft	(CL Beam 4 to C	CG Beam Group)		
x _{Beam5} =	-1.49 ft	(CL Beam 5 to C	CG Beam Group)		
$x_{BeamG} =$	-4.44 ft	(CL Beam 6 to C	CG Beam Group)		
x _{Beam7} =	-7.39 ft	(CL Beam 7 to C	CG Beam Group)		
$x_{Beam8} =$	-10.34 ft	(CL Beam 8 to C	CG Beam Group)		
$x^2_{Beaml} =$	108.29	x _{Beam I} =	10.41		
$x^2_{Beam2} =$	54.85	x _{Beam2} =	7.41		
$x^2_{Beam3} =$	19.42	x _{Beam3} =	4.41		
$x^2_{Beam4} =$	2.12	x _{Beam4} =	1.46		
$x^2_{Beam5} =$	2.23	x _{Beam5} =	-1.49		
$x^2_{Beam6} =$	19.75	x _{BeamG} =	-4.44		
$x^2_{Beam7} =$	54.67	$x_{Beam7} =$	-7.39		
$x^2_{Beam8} =$	106.99	x _{Beam8} =	-10.34		
$\Sigma x^2 =$	368.32				

PAGE 28 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

$$x_{\text{Beam I}} / \Sigma x^2 = 0.0283$$

 $x_{\text{Beam B}} / \Sigma x^2 = 0.0281$

$$R = \frac{N_L}{N_b} + \frac{X_{ext} \sum_{b}^{N_L} e}{\sum_{b}^{N_b} x^2}$$

e = Eccentricity of a design truck or a design lane $N_L = Number$ of loaded lanes under consideration load from the C.O.G. of the pattern of girders (ft)

x = Horizontal distance from the C.O.G. of the pattern of girders to each girder (ft)

 $X_{\rm ext}$ = Horizontal distance from the C.O.G. of the pattern of girders to the exterior girder (ft)

$$e_1 = 5.41 \text{ ft} = 10.41 \text{ ft} - 2.00 \text{ ft} - 3.00 \text{ ft}$$

 $e_2 = -5.39 \text{ ft} = 10.41 \text{ ft} - 2.00 \text{ ft} - 13.79 \text{ ft}$

$$R_1 = 0.278 = \frac{1 + (0.0283 \text{ x})}{8}$$

$$R_2 = 0.251 = \frac{2 + 0.0283 \times (5.41 \text{ ft + } -1.0283 \times (5.41 \text{ ft +$$

One Lane Loaded (Lever Rule)

 $DF_{Mom,Beam1} = 0.200 = 0.167 x$ 1.20

One Lane Loaded (Pile Cap)

 $DF_{Mom.Beam1} = 0.333 = 0.278 x$ 1.20

Two or More Lanes Loaded (Formula)

 $DF_{Mom,Beam1} = 0.266$ 0.266

Two or More Lanes Loaded (Pile Cap)

 $DF_{Mom,Beam1} = 0.251 = 0.251 x$ 1.00

Critical Factor

DF_{Mom.Beam I} = 0.333

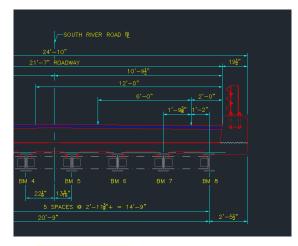
PAGE 29 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors


C-05-027

0.5

Beam 8

One Lane Loaded

Lever Rule

DI = 1.17 ft

S = 2.95 ft

 $DF_{Mom,Beam8} = 0.302 = (1 - (1.17 ft/ 2.95 ft)) x$

Two or More Lanes Loaded

Beam 8 $d_e = 0.818 \text{ ft}$

e = 0.860 ft = 0.77 + (0.818 ft/9.1)

g,interior = 0.347

 $DF_{Mom.Beam8} = 0.298 = 0.860 \text{ ft x}$ 0.347

PAGE 30 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

"Rigid Superstructure" Pile Cap Analogy

$$CG = rac{\Sigma x A}{\Sigma A}$$
 x= horizontal distance from left edge of bridge deck A= Area of girder section

Beam	X	Α	x*A
Beam I	1.625	0.139	0.226
Beam 2	4.625	0.139	0.642
Beam 3	7.625	0.108	0.826
Beam 4	10.575	0.108	1.15
Beam 5	13.525	0.108	1.47
Beam 6	16.475	0.108	1.78
Beam 7	19.425	0.108	2.10
Beam 8	22.375	0.108	2.42
	Σ =	0.928	10.618

CG = 11.44 ft *from the left edge of bridge deck

 $R = \frac{N_L}{N_b} + \frac{X_{ext} \sum_{k=1}^{N_L} e}{\sum_{k=1}^{N_b} x^2}$

 $N_b =$ number of beams

x_{Beam8} =

e = eccentricity of load from C.G.

x = horizontal distance from C.G. of pattern of beams to each beam x = horizontal dist from C.G. of pattern of beams to exterior beam

11.44 ft *from the left edge of bridge deck Beam | Overhang = 1.63 ft Beam 8 Overhang = 0.00 ft Out to Out Dist. 24.83 ft 9.82 ft (CL Beam I to CG Beam Group) $x_{Beam I} =$ 7.41 ft (CL Beam 2 to CG Beam Group) $x_{Beam2} =$ 4.41 ft (CL Beam 3 to CG Beam Group) 1.46 ft (CL Beam 4 to CG Beam Group) $x_{Beam4} =$ -1.49 ft (CL Beam 5 to CG Beam Group) $x_{Beam5} =$ x_{Beam6} = -4.44 ft (CL Beam 6 to CG Beam Group) -7.39 ft (CL Beam 7 to CG Beam Group)

-10.34 ft

(CL Beam 8 to CG Beam Group)

PAGE 3 | OF 68 CALC BY TRS CHECK BY DCH DATE OCT 2024

Load Rating - Live Load Distribut	ion Factors			C-05-027
$x^2_{Beam I} =$	96.42	x _{Beam I} =	9.82	
$x^2_{Beam2} =$	54.85	x _{Beam2} =	7.41	
$x^2_{Beam3} =$	19.42	x _{Beam3} =	4.41	
$x^2_{Beam4} =$	2.12	x _{Beam4} =	1.46	
$x^2_{Beam5} =$	2.23	x _{Beam5} =	-1.49	
$x^2_{BeamG} =$	19.75	x _{BeamG} =	-4.44	
$x^2_{Beam7} =$	54.67	x _{Beam7} =	-7.39	
$x^2_{Beam8} =$	106.99	x _{Beam8} =	-10.34	
$\sum x^2 =$	356.45	_		
			$V \sum_{l=1}^{N_L} a_{l}$	-4.61 ft))
$x_{Beam I} / \sum x^2 =$	0.0275		N_{t} $N_{ext} \sum_{e} e$	
$x_{Beam 1} / \sum x^2 = x_{Beam 8} / \sum x^2 = x_{Beam$	0.0290	R	$C = \frac{L}{N} + \frac{L}{N_b}$	

 $e = \text{Eccentricity of a design truck or a design lane} \ \ N_L = \ \text{Number of loaded lanes under consideration}$ load from the C.O.G. of the pattern of girders (ft)

x = Horizontal distance from the C.O.G. of the X_{ext} = Horizontal distance from the C.O.G. of pattern of girders to each girder (ft)

the pattern of girders to the exterior girder (ft)

$$e_1 = 6.18 \text{ ft} = 10.34 \text{ ft} - 1.17 \text{ ft} - 3.00 \text{ ft}$$

 $e_2 = -4.61 \text{ ft} = 10.34 \text{ ft} - 1.17 \text{ ft} - 13.79 \text{ ft}$

$$R_1 = 0.304 = \frac{1 + (0.0290 \times 6.18 \text{ ft})}{8}$$

$$R_2 = 0.295 = \frac{2 + (0.0290 \times (6.18 \text{ ft} + 6.18 \text{ ft}))}{2}$$

One Lane Loaded (Lever Rule)

 $DF_{Mom.Beam8} = 0.363 =$ 0.302 x 1.20 One Lane Loaded (Pile Cap) $DF_{Mom.Beam8} = 0.365 =$ 0.304 x 1.20

Two or More Lanes Loaded (Formula)

 $DF_{Mom.Beam8} = 0.298 =$ 0.298

Two or More Lanes Loaded (Pile Cap)

0.295 = 0.295 x DF_{Mom.Beam8} = 1.00

Critical Factor

DF_{Mom.Beam8} = 0.365

PAGE 32 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

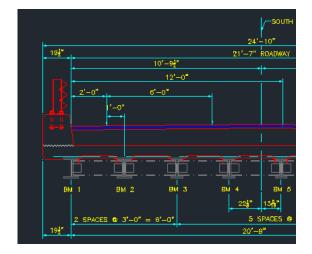
C-05-027

Shear for Exterior Beams:

Per (2) - Section 3.5.3.10, Distribution of live load to exterior beams under safety curb or barrier shall be calculated using (4) - Section 4.6.2.2.2

Applicability

 $-1.0 \le d_e \le 5.5$


(5) 4.6.2.2.3b-1

Beam | $d_e =$ -0.017 ft Beam 8 $d_e =$ 0.818 ft OKAY OKAY

Concrete Deck or Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with	a, e, k and also i, j if sufficiently connected to act as a unit	Lever Rule	$g = e g_{interior}$ $e = 0.6 + \frac{d_e}{10}$	$-1.0 \le d_e \le 5.5$
Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T- Beams, T- and Double T- Beams			Lever Rule	$N_b = 3$

Beam I

One Lane Loaded

0.5

PAGE 33 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

Lever Rule

Beam | D= 2.00 ft

Beam IS = 3.00 ft

 $DF_{Shear,Beam I} = 0.167 = (1 - (2.00 ft/ 3.00 ft)) x$

Two or More Lanes Loaded

Beam | $d_e = -0.017 =$

e = 0.598 = 0.60 + -(0.017 ft/ 10.0)

g,interior = 0.443

 $DF_{Shear,Beam1} = 0.265 = 0.598 \text{ ft x}$ 0.443

One Lane Loaded (Lever Rule)

 $DF_{Shear,Beam1} = 0.200 = 0.167 x$ 1.20

One Lane Loaded (Pile Cap) *See Moment Calculation

 $DF_{Shear,Beam} = 0.333 = 0.278 x$ 1.20

Two or More Lanes Loaded

 $DF_{Shear,Beam1} = 0.265 = 0.265$

Two or More Lanes Loaded (Pile Cap) *See Moment Calculation

 $DF_{Shear,Beam1} = 0.251 = 0.251 x$ 1.00

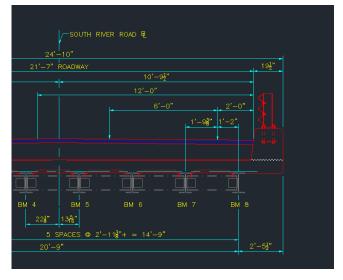
Critical Factor

 $DF_{Shear,Beam I} = 0.333$

PAGE 34 OF 68

CALC BY TRS

CHECK BY DCH


DATE OCT 2024

0.5

Load Rating - Live Load Distribution Factors C-05-027

Beam 8

One Lane Loaded

Lever Rule

Beam | D = 1.17 ft Beam | S = 2.95 ft

 $DF_{Shear.Beam8} = 0.302 = (1 - (1.17 \text{ ft/} 2.95 \text{ ft)}) x$

PAGE 35 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

Two or More Lanes Loaded

Beam $8 d_e = 0.818 =$

e = 0.682 = 0.60 + (0.818 ft/ 10.0)

g, interior = 0.439

 $DF_{Shear.Beam8} = 0.299 = 0.682 \text{ ft x}$ 0.439

One Lane Loaded (Lever Rule)

 $DF_{Shear,Beam8} = 0.363 = 0.302 x$ 1.20

One Lane Loaded (Pile Cap) *See Moment Calculation

 $DF_{Shear,Beam8} = 0.365 = 0.304 x$ 1.20

Two or More Lanes Loaded

 $DF_{Shear,Beam8} = 0.299 = 0.299 x$ 1.00

Two or More Lanes Loaded (Pile Cap) *See Moment Calculation

 $DF_{Shear,Beam8} = 0.295 = 0.295 x 1.00$

Critical Factor

 $DF_{Shear,Beam8} = 0.365$

PAGE 36 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

Deflection for All Beams

C2.5.2.6.2

These provisions permit, but do not encourage, the use of past practice for deflection control. Designers were permitted to exceed these limits at their discretion in the past. Calculated deflections of structures have often been found to be difficult to verify in the field due to numerous sources of stiffness not accounted for in calculations. Despite this, many Owners and designers have found comfort in the past requirements to limit the overall stiffness of bridges. The desire for continued availability of some guidance in this area, often stated during the development of these Specifications, has resulted in the retention of optional criteria, except for orthotropic decks, for which the criteria are required. Deflection criteria are also mandatory for lightweight decks comprised of metal and concrete, such as filled and partially filled grid decks, and unfilled grid decks composite with reinforced concrete slabs, as provided in Article 9.5.2.

Additional guidance regarding deflection of steel bridges can be found in Wright and Walker (1971).

Additional considerations and recommendations for deflection in timber bridge components are discussed in more detail in Chapters 7, 8, and 9 in Ritter (1990).

For a straight girder system bridge, this is equivalent to saying that the distribution factor for deflection is equal to the number of lanes divided by the number of beams.

g = 2No. of Beams = 8

DF = 0.250 = 2/

CLIENT TOWN OF CHARLEMONT						
PROIECT	SOUTH RIVER ROAD					
-	o. C-05-027					
	STRUCTURAL CALCS.					

PAGE 37 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Alternate Live Loads	C-05-027
Albanasha luna laa I Dabahahaa E	Sa ah awa
Alternate Live Load Distribution F	<u>actors</u>

PAGE 38 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Alternate Live Load Distribution Factors

C-05-027

References:

- 1) AASHTO Standard Specifications, 17th Edition, 2002
- 2) MassDOT Bridge Manual 2024
- 3) 1995 Mass Highway Bridge Manual
- 4) AISC Steel Construction Manual, 15th Edition, 2017
- 5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata

Narrative:

Calculate live load distribution factors per (2) and (5) Section 3.5.4.

Summary:

<u>Beam</u>	LLDF M	LLDF V	LLDF M FAT.	LLDF V FAT.	LLDF DEFLECTION
1	×	X	×	X	X
2	0.382	0.500	0.382	0.417	0.250
3	0.387	0.500	0.387	0.417	0.250
4	0.387	0.500	0.387	0.417	0.250
5	0.387	0.500	0.387	0.417	0.250
6	0.387	0.500	0.387	0.417	0.250
7	0.387	0.500	0.387	0.417	0.250
8	X	X	×	×	X

The existing beam spacing is below the minimum beam spacing specified in the Range of Applicability for live load distribution factors (LLDFs) for shear and moment of interior beams, as given in Tables 4.6.2.2.2b-1 and 4.6.2.2.3a-1. Consequently, an alternate analysis is performed by theoretically increasing the beam spacing to the minimum value specified in these tables. By demonstrating that the beams are adequate at this larger spacing, which falls within the range of applicability, it is shown that they will be adequate for the actual smaller spacing. This is because the distribution factors would be lower in the real conditions at the smaller spacing. The interior beams were checked to rate above statutory with the distribution factors. The results presented use the distribution factors from the actual beam spacing.

Geometry:

PAGE 39 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Alternate Live Load Distribution Factors

C-05-027

Beam Geometry:

Beam 3-8 Type = W14x53 Beam 3-8 A = 15.6 in² Beam 3-8 Depth = 13.9 in Beam 3-8 Y_t = 6.95 in Beam 3-8 I_x = 541 in⁴

Calculate K_a:

Beam I-2 $e_a =$ 11.0 m (8.00 in x 0.5) +7.00 in Beam 3-8 $e_a =$ 11.0 m (8.00 in x 0.5) +6.95 in n = 6.76 29000 ksi/ 4291 ksi (5) 4.6.2.2.1-2 Beam I-2 $K_g = 21,234 \text{ in}^4$ (5) 4.6.2.2.1-1 Beam 3-8 $K_a = 16,297 \text{ in}^4$ (5) 4.6.2.2.1-1

PAGE 40 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Alternate Live Load Distribution Factors

C-05-027

Moment for Interior Beams:

Per (2) - Section 3.5.3.8\$9, Distribution of live load to interior beams shall be calculated using (5) - Section 4.6.2.2.2

Applicability

$$3.5 \le S \le 16.0$$

 $4.5 \le t_s \le 12.0$
 $20 \le L \le 240$
 $N_b \ge 4$
 $10,000 \le K_g \le 7,000,000$

(5) Table 4.6.2.2.2b-1

	Beam 3-7	Beam 3-7 Check
S =	3.50 ft	OKAY
$t_s =$	8.00 in	OKAY
L =	21.0 ft	OKAY
N _♭ =	8	OKAY
$K_g =$	16,297 ın 4	OKAY

(4) Table 4.6.2.2.2b-1

Concrete Deck or	a, e, k and also i, j	One Design Lane Loaded:	$3.5 \le S \le 16.0$
Filled Grid, Partially	if sufficiently	$(c)^{0.4}(c)^{0.3}(K)^{0.1}$	$4.5 \le t_s \le 12.0$
Filled Grid, or	connected to act	$0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12.0 Lt_s^3}\right)^{0.1}$	$20 \le L \le 240$
Unfilled Grid Deck	as a unit	$(14) (L) (12.0Lt_s^3)$	$N_b \ge 4$
Composite with		Two or More Design Lanes Loaded:	$10,000 \le K_g \le$
Reinforced Concrete		$(c)^{0.6}(c)^{0.2}(K)^{0.1}$	7,000,000
Slab on Steel or		$0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{12.0 Lt_s^3}\right)^{0.1}$	
Concrete Beams;		$(9.5) (L) (12.0 Lt_s^3)$	
Concrete T-Beams, T-		use lesser of the values obtained from the	$N_b = 3$
and Double T-Sections		equation above with $N_b = 3$ or the lever rule	

CLIENT TOWN OF CHARLEMONT SOUTH RIVER ROAD PROIECT ___ BRIDGE NO. <u>C-05-027</u> SUBJECT STRUCTURAL CALCS.

PAGE 4 | OF 68 CALC BY TRS CHECK BY DCH DATE OCT 2024

Load Rating - Alternate Live Load Distribution Factors

C-05-027

Beam 2

One Lane Loaded

 $DF_{Mom,Beam2} =$ 0.324

 $\begin{pmatrix}
3.50 \text{ ft} \\
14
\end{pmatrix}
\begin{pmatrix}
3.50 \text{ ft} \\
24.34 \text{ ft}
\end{pmatrix}$ 0.1 $\begin{pmatrix}
21,234 \text{ in}^4 \\
12.0 \times 24.34 \text{ ft} \times \\
\end{pmatrix}$ (8.00 in) 3

Two or More Lanes Loaded

0.382 DF_{Mom,Beam2}=

 $\left(\begin{array}{c}
3.50 \text{ ft} \\
9.5
\end{array}\right)^{0.6} \left(\begin{array}{c}
3.50 \text{ ft} \\
24.34 \text{ ft}
\end{array}\right)^{0.2} \\
\left(\begin{array}{c}
21,234 \text{ in}^4 \\
12.0 \text{ x}
\end{array}\right)^{0.1}$

One Lane Loaded

DF_{Mom Beam2}= 0.324

Two or More Lanes Loaded

0.382 DF_{Mom Beam2}=

Critical Factor

 $DF_{Mom,Beam2} =$ 0.382

<u>Beam 3-</u>7

One Lane Loaded

DF_{Mom.Beam3-7}= 0.333

0.06 + $\left(\frac{3.50 \text{ ft}}{14} \right)^{0.4} \left(\frac{3.50 \text{ ft}}{21.00 \text{ ft}} \right)^{0.3}$ $\times \left(\frac{16,297 \text{ in}^4}{12.0 \text{ x}} \right)^{0.3} \left(\frac{3.50 \text{ ft}}{21.00 \text{ ft}} \right)^{0.3}$

Two or More Lanes Loaded

DF_{Mom,Beam3-7}= 0.387

One Lane Loaded

DF_{Mom Beam3-7}= 0.333

Two or More Lanes Loaded

DF_{Mom Beam3-7}= 0.387

Critical Factor

 $DF_{Mom.Beam3-7} =$ 0.387

PAGE 42 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load Rating - Alternate Live Load Distribution Factors

C-05-027

Shear for Interior Beams:

Per (2) - Section 3.5.3.8\$9, Distribution of live load to interior beams shall be calculated using (5) - Section 4.6.2.2.2

Applicability

(5) Table 4.6.2.2.3a-1

 $3.5 \le S \le 16.0$ $20 \le L \le 240$ $4.5 \le t_s \le 12.0$ $N_b \ge 4$

(5) Table 4.6.2.2.3a-1

Concrete Deck or	a, e, k and also	0.36+	$S \left(S\right)^{2.0}$	$3.5 \le S \le 16.0$
Filled Grid,	i, j if	25.0	$0.2 + \frac{3}{12} - \left(\frac{3}{35}\right)$	$20 \le L \le 240$
Partially Filled	sufficiently	25.0	12 (33)	
Grid, or Unfilled	connected to			$4.5 \le t_s \le 12.0$
Grid Deck	act as a unit			$N_b \ge 4$
Composite with				,
Reinforced				
Concrete Slab on				
Steel or Concrete				
Beams; Concrete		Lever Rule	Lever Rule	$N_b = 3$
T-Beams, T- and				
Double T-Sections				

CLIENT TOWN OF CHARLEMONT SOUTH RIVER ROAD PROIECT ____ BRIDGE NO. C-05-027 SUBJECT STRUCTURAL CALCS.

PAGE 43 OF 68 CALC BY TRS CHECK BY DCH DATE OCT 2024

Load Rating - Alternate Live Load Distribution Factors

C-05-027

Beam 2

One Lane Loaded

 $\mathsf{DF}_{\mathsf{Shear},\mathsf{Beam2}} =$

0.500

0.36 +

Two or More Lanes Loaded

DF_{Shear,Beam2} = 0.482 0.2 +

 $\left(\frac{3.50 \text{ ft}}{12}\right) \qquad \left(\frac{3.50 \text{ ft}}{35}\right)^{2.0}$

One Lane Loaded

 $\mathsf{DF}_{\mathsf{Shear},\mathsf{Beam2}} =$ 0.500

Two or More Lanes Loaded

DF_{Shear,Beam2} =

Critical Factor

 $DF_{Shear,Beam2} =$ 0.500

Beam 3-7

One Lane Loaded

 $DF_{Shear,Beam3-7} =$ 0.500 0.36 +

Two or More Lanes Loaded

 $DF_{Shear,Beam3-7} =$

0.2 +

 $\left(\frac{3.50 \text{ ft}}{12}\right) \qquad \left(\frac{3.50 \text{ ft}}{35}\right) \qquad 2.0$

One Lane Loaded

0.482

 ${\rm DF_{Shear,Beam3-7}} =$ 0.500

Two or More Lanes Loaded

DF_{Shear,Beam3-7} = 0.482

Critical Factor

 $DF_{Shear,Beam3-7} =$ 0.500

CLIENT TOWN OF CHARLEMONT						
PROJECT SOUTH RIVER ROAD						
•	o. C-05-027					
	STRUCTURAL CALCS.					

PAGE 44 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Load R	ating - Deterioration		C-05-027	
		D -1		
		<u>Deterioration</u>		

PAGE 45 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

C-05-027

Load Rating - Deterioration

References:

- 1) AASHTO Standard Specifications, 17th Edition, 2002
- 2) MassDOT Bridge Manual 2024
- 3) 1995 Mass Highway Bridge Manual
- 4) AISC Steel Construction Manual, 15th Edition, 2017
- 5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata
- 6) AASHTO Manual for Bridge Evaluation, 3rd Edition, 2018 thru 2022 Interim

Bottom Flange Deterioration

Top flange deterioration was estimated to be a 1/4" loss of thickness to the top flange along the entire span of each beam.

BM #	Shape	Top Flange Thickness	Remaining Thickness	Percent Loss
BM 1-2	W14x68	0.72	0.47	34.72
BM 3-8	W14x53	0.66	0.41	37.88

CLIENT TOWN OF CHARLEMONT						
PROIECT	SOUTH RIVER ROAD					
-	o. C-05-027					
	STRUCTURAL CALCS.					

PAGE 46 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SECTION PROPERTIES	C 05 027				
SECTION PROPERTIES	C-05-027				
Cook as Passashas					
Section Properties					

PAGE 47 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Q DECK = 149.6 m^3

SECTION PROPERTIES C-05-027

COMPOSITE SECTION PROPERTIES

GIRDER DESCRIPTION Beam I
GIRDER NUMBER BM I
GIRDER LOCATION EXTERIOR

WELDED PLATE GIRDER

Q - DECK

GROSS SECTION PROPERTIES

ELEMENTS						PROPERTIES	ò			
COMPOSITE	n value	width	У	WIDTH	DEPTH	А	Υ	AY	AY ²	Io
DECK	n = 6.76	37.50	4.00	5.55	8.00	44.38	18.00	798.8	14378.7	236.7
Cover Plate			0.000	0	0	0.00	14.00	0.0	0.0	0.0
Flange Plate			0.360	10.00	0.72	7.20	13.64	98.2	1339.6	0.3
Web Plate			6.280	0.42	12.56	5.21	7.00	36.5	255.4	68.5
Flange Plate			0.360	10.00	0.72	7.20	0.36	2.6	0.9	0.3
Cover Plate			0.000	0	0	0.00	0.00	0.0	0.0	0.0
		SUMS			22.00	64.0	-	936.1	15974.6	305.8

$$\begin{split} I_{Z} = & \Sigma I_{O} + \Sigma A Y^{2} & \text{I 6280} & \text{in}^{4} & \text{I}_{GROSS} = I_{Z} - (\Sigma A)(Y)^{2} & 2586.499 & \text{in}^{4} \\ Y' = & \frac{\Sigma A Y}{\Sigma A} & \text{I 4.63} & \text{in} & \frac{\text{DEPTH (Incl Deck)}}{C_{TOP DECK}} & \frac{22.00}{7.37} & \text{in} \\ & & \frac{C_{TOP DECK}}{S_{DECK, TRANS}} & \frac{7.37}{2372.0} & \text{in}^{3} \end{split}$$

 MEMBER AREA
 19.6 in²
 MEMBER DEPTH (Less Deck)
 14.00
 in

 WEB AREA
 5.8 in²
 C_{TOP 9T} -0.63 in
 C_{BOTTOM} 14.63 in

 S_{TOP 9T} -4114.4 in³
 S_{BOTTOM} 176.8 in³

d = Y-Y' 3.37 in

STATICAL MOMENT OF INERTIA OF TOP AND BOTTOM FLANGES - Q = Σ Ad

A =

where: A is the area of each flange component ϕ d is the distance from the N.A. of the section the C.G. of the area

44.38 in²

Q - TOP FLANGE cover plates + deck $A = 44.38 \text{ in}^2$ d = Y-Y3.37 in 149.6 m³ cover plate $A = 0.00 \text{ in}^2$ d = Y-Y -0.63 in 0.0 in³ flange plate A = 7.20 ^{In²} d = Y-Y-0.99 ın Q =-7.1 in³ Q TOP FLANGE = Σ 142.5 m³ Q - BOTTOM FLANGE cover plates flange plate A = 7.20 in² d = Y-Y14.27 m Q= 102.7 m³ 14.63 m cover plate A = 0.00 in² d = Y-YQ=____ 0.0 in³ Q BOTTOM FLANGE = Σ 102.7 m³

PAGE 48 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

Q DECK = 147.7 in^3

SECTION PROPERTIES C-05-027

COMPOSITE SECTION PROPERTIES

GIRDER DESCRIPTION Beam 2
GIRDER NUMBER BM2
GIRDER LOCATION INTERIOR

WELDED PLATE GIRDER

Q - DECK

GROSS SECTION PROPERTIES

ELEMENTS					PROPERTIES					
COMPOSITE	n value	width	У	WIDTH	DEPTH	Α	Υ	AY	AY ²	Io
DECK	n= 6.76	36.00	4.00	5.33	8.00	42.60	18.00	766.9	13803.6	227.2
Cover Plate			0.000	0	0	0.00	14.00	0.0	0.0	0.0
Flange Plate			0.360	10.00	0.72	7.20	13.64	98.2	1339.6	0.3
Web Plate			6.280	0.42	12.56	5.21	7.00	36.5	255.4	68.5
Flange Plate			0.360	10.00	0.72	7.20	0.36	2.6	0.9	0.3
Cover Plate			0.000	0	0	0.00	0.00	0.0	0.0	0.0
		SUMS			22.00	62.2	1	904.2	15399.4	296.4

$$I_{z} = \Sigma I_{0} + \Sigma A Y^{2} \qquad 15696 \qquad \text{in}^{4} \qquad I_{\text{GROSS}} = I_{z} - (\Sigma A)(Y)^{2} \qquad 2556.280 \qquad \text{in}^{4}$$

$$Y' = \frac{\Sigma A Y}{\Sigma A} \qquad 14.53 \qquad \text{in} \qquad \frac{\text{DEPTH (Incl Deck)}}{C_{\text{TOP DECK}}} \frac{22.00}{7.47} \qquad \text{in}$$

$$\frac{C_{\text{TOP DECK}}}{S_{\text{DECK TRANS}}} \frac{7.47}{2314.1} \qquad \text{in}^{3}$$

 MEMBER AREA
 19.6 in²
 MEMBER DEPTH (Less Deck)
 14.00
 in

 WEB AREA
 5.8 in²
 C_{TOP ST} -0.53 in S_{TOP ST} -4800.9 in³
 C_{BOTTOM} 14.53 in S_{BOTTOM} 175.9 in³

d = Y-Y' 3.47 in

STATICAL MOMENT OF INERTIA OF TOP AND BOTTOM FLANGES - Q = Σ Ad

where: A is the area of each flange component ϕ d is the distance from the N.A. of the section the C.G. of the area

 $A = 42.60 \text{ in}^2$

Q - TOP FLANGE	cover plates +	deck				
deck	A =	42.60 m²	d = Y-Y	3.47 ın	Q=	147.7 ın ³
cover plate	A =	0.00 in ²	d = Y-Y	-0.53 in	Q=	0.0 in ³
flange plate	A =	7.20 ^{In²}	d = Y-Y	-0.89 ın	Q=	-6.4 ^{In³}
				Q	TOP FLANGE = Σ	141.3 m ³
Q - BOTTOM FLANGE	cover plates					
flange plate	A =	7.20 ın²	d = Y-Y	14.17 in	Q=	102.0 m ³
cover plate	A =	0.00 in ²	d = Y-Y	14.53 m	Q=	0.0 In ³
				Q BOT	FOM FLANGE = Σ	102.0 m ³

PAGE 49 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SECTION PROPERTIES C-05-027

COMPOSITE SECTION PROPERTIES

GIRDER DESCRIPTION Beam 3-7
GIRDER NUMBER BM3-7
GIRDER LOCATION INTERIOR

WELDED PLATE GIRDER

Q - DECK

GROSS SECTION PROPERTIES

ELEMENTS						PROPERTIES				
COMPOSITE	n value	width	У	WIDTH	DEPTH	А	Υ	AY	AY ²	Io
DECK	n = 6.76	35.38	4.00	5.23	8.00	41.86	17.90	749.4	13413.6	223.3
Cover Plate			0.000	0	0	0.00	13.90	0.0	0.0	0.0
Flange Plate			0.330	8.06	0.66	5.32	13.57	72.2	979.6	0.2
Web Plate			6.290	0.37	12.58	4.65	6.95	32.3	224.8	61.4
Flange Plate			0.330	8.06	0.66	5.32	0.33	1.8	0.6	0.2
Cover Plate			0.000	0	0	0.00	0.00	0.0	0.0	0.0
		SUMS			21.90	57.2	1	855.7	14618.6	285.0

$$\begin{split} I_{Z} = & \Sigma I_{O} + \Sigma A Y^{2} & \text{I 4904} & \text{In}^{4} & \text{I}_{GROSS} = I_{Z} - (\Sigma A)(Y)^{2} & \underline{2094.403} & \text{In}^{4} \\ Y' = & \underline{\Sigma} A Y & \text{In} & \underline{\Sigma} A & \text{II} & \underline{\Sigma} A & \underline{\Sigma} A$$

 MEMBER AREA
 15.3 in²
 MEMBER DEPTH (Less Deck)
 13.90
 in

 WEB AREA
 5.1 in²
 C_{TOP 9T} -1.07 in S_{TOP 9T} -1.957.2 in³
 C_{BOTTOM} 14.97 in S_{BOTTOM} 139.9 in³

d = Y-Y 2.93 in

Q DECK = 122.7 in^3

STATICAL MOMENT OF INERTIA OF TOP AND BOTTOM FLANGES - Q = Σ Ad

A =

where: A is the area of each flange component ϕ d is the distance from the N.A. of the section the C.G. of the area

41.86 m²

Q - TOP FLANGE cover plates + deck $A = 41.86 \text{ m}^2$ d = Y-Y2.93 ın 122.7 m³ cover plate $A = 0.00 \text{ in}^2$ d = Y-Y-1.07 in 0.0 in³ flange plate A = 5.32 ^{In²} d = Y-Y-1.40 in Q =-7.4 In³ Q TOP FLANGE = Σ 115.2 m³ Q - BOTTOM FLANGE cover plates flange plate A = 5.32 m² d = Y-Y14.64 m Q= 77.9 in³ 14.97 in cover plate A = 0.00 in² d = Y-YQ=___ 0.0 in³ Q BOTTOM FLANGE = Σ

PAGE 50 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SECTION PROPERTIES C-05-027

COMPOSITE SECTION PROPERTIES

GIRDER DESCRIPTION Beam 8
GIRDER NUMBER BM8
GIRDER LOCATION EXTERIOR

WELDED PLATE GIRDER

Q - DECK

GROSS SECTION PROPERTIES

ELEMENTS						PROPERTIES				
COMPOSITE	n value	width	У	WIDTH	DEPTH	А	Υ	AY	AY ²	Io
DECK	n= 6.76	47.19	4.00	6.98	8.00	55.84	17.90	999.6	17892.7	297.8
Cover Plate			0.000	0	0	0.00	13.90	0.0	0.0	0.0
Flange Plate			0.330	8.06	0.66	5.32	13.57	72.2	979.6	0.2
Web Plate			6.290	0.37	12.58	4.65	6.95	32.3	224.8	61.4
Flange Plate			0.330	8.06	0.66	5.32	0.33	1.8	0.6	0.2
Cover Plate			0.000	0	0	0.00	0.00	0.0	0.0	0.0
		SUMS			21.90	71.1	•	1105.9	19097.7	359.6

$$I_{z} = \Sigma I_{0} + \Sigma A Y^{2}$$
 19457 in
$$I_{GROSS} = I_{z} - (\Sigma A)(Y)^{2}$$
 2265.380 in
$$Y = \frac{\Sigma A Y}{\Sigma A}$$
 15.55 in
$$\frac{DEPTH (Incl Deck)}{C_{TOP DECk}} = \frac{21.90}{6.35}$$
 in
$$\frac{C_{TOP DECk}}{S_{DECK TRANS}} = \frac{6.35}{2410.1}$$
 in
$$\frac{1}{100} = \frac{1}{100} = \frac$$

 MEMBER AREA
 15.3 in²
 MEMBER DEPTH (Less Deck)
 13.90
 in

 WEB AREA
 5.1 in²
 C_{TOP 9T} -1.65 in
 C_{BOTTOM} 15.55 in

 5_{TOP 9T} -1376.4 in³
 5_{BOTTOM} 145.7 in³

d = Y-Y 2.35 in Q DECK = 131.5 in³

STATICAL MOMENT OF INERTIA OF TOP AND BOTTOM FLANGES - Q = Σ Ad

where: A is the area of each flange component ϕ d is the distance from the N.A. of the section the C.G. of the area

 $A = 55.84 \text{ m}^2$

Q - TOP FLANGE	cover plates +	deck				
deck	A =	55.84 ın²	d = Y-Y'	2.35 ın	Q=	131.5 m ³
cover plate	A =	0.00 in ²	d = Y-Y	-1.65 m	Q=	0.0 in ³
flange plate	A =	5.32 ^{ın²}	d = Y-Y'	-1.98 ın	Q=	-10.5 ^{In³}
					Q TOP FLANGE = Σ	121.0 m ³
Q - BOTTOM FLANGE	cover plates					
flange plate	A =	5.32 m²	d = Y-Y	15.22 m	Q=	80.9 ın³
cover plate	A =	0.00 In ²	d = Y-Y	15.55 m	Q=	0.0 In ³
				Q E	BOTTOM FLANGE = Σ	80.9 ın ³

CLIENT	TOWN OF CHARLEMONT
PROIECT	SOUTH RIVER ROAD
•	o. C-05-027
	STRUCTURAL CALCS.
SODJECT -	

PAGE 5 OF 68	_					
CALC BY TRS	_					
CHECK BY DCH						
DATE OCT 2024						

SHEAR CONNECTORS

PAGE 52 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SHEAR STUDS C-05-027

References:

- I. MassDOT LRFD Bridge Manual, 2024 Part II
- 2. AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 with 2021 Errata

Per Ref (2) 6.3.7 Shear studs shall be designed for the controlling fatigue limit state, then checked with the controlling strength limit state.

Material Properties:

```
0.750 in (Ref I - Dwg. 8.4.2)
  Shear Connector Diameter, d =
     Shear Connector Area, A_{sc} =
                                     0.44 in
                                     6.00 in
    Shear Connector Height, h =
   Number of Studs in a Line, n =
                                         2
Minimum Edge Clear Distance, e =
                                     1.00 in
                                                 (Ref 2 - 6.10.10.1.3)
                                      5 ksı
                      Deck f'c =
                      Deck Ec =
                                    4287 ksi
           Shear Connector Fu =
                                      60 ksı
                                                 (Ref 2 - 6.4.4)
                 Girder Web F<sub>v</sub> =
                                      33 ksı
               Girder Flange F_v =
                                      33 ksı
Beam I-2 Top Flange Width, bf =
                                     10.00 in
Beam 3-8 Top Flange Width, bf =
                                     8.06 in
             Deck Thickness, t_d =
                                     8.00 in
           Haunch Thickness, t_h =
                                      1.00 in
         Load Factor Fatigue I =
                                       1.75
                                                 (Ref 2 - Table 3.4.1-1)
         Load Factor Fatigue II =
                                      0.80
                                                 (Ref 2 - Table 3.4.1-1)
```


PAGE 53 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SHEAR STUDS C-05-027

Geometry Checks:

Ref 2 - 6.10.10.1.1, ratio of the height to the diameter of a stud shear connector shall not be less than 4.0.

$$\frac{h}{d} = \frac{6.00 \text{ in}}{0.75 \text{ in}} = 8.00 \text{ OK}$$

Ref 2 - 6.10.10.1.2, The center-to-center pitch of shear connectors shall also not be less than six stud diameters.

Min. Pitch = 10.00 in > 4.50 in OK

Ref 2 - 6.10.10.1.3, stud shear connectors shall not be closer than 4.0 stud diameters center-to-center transverse to the longitudinal axis of the supporting member.

Beam 1-2: Sprovided = 7.25 ın 3.00 in OK Edge Dist. = 1.38 in 1.00 in OK Beam 3-8: $S_{provided} =$ 3.00 in OK 5.31 in Edge Dist. = 1.38 in 1.00 in OK

Ref 2 - 6.10.10.1.4, the clear depth of concrete cover over the tops of the shear connectors should not be less than 2.0 in. Shear connectors should penetrate at least 2.0 in. into the concrete deck.

 Cover Top =
 9.00° 6.00° =
 3.00° OK

 Pen. Bot =
 6.00° 1.00° =
 5.00° OK

PAGE 54 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SHEAR STUDS C-05-027

Traffic Information:

ADT = $\begin{vmatrix} 154 \\ 9.24 \\ p = \end{vmatrix}$ (Ref 2 - Table 3.6.1.4.2-1)

 $N = (365)(75)n(ADTT)_{SL}$ (Ref 2 - Eq. 6.6.1.2.5-3) $N = 365 \times 75 \times 1 \times 7.85 = 215003.25$

_ Age and Service ___ (106) Year Reconstructed 1960 (42) Type of Service: On -Highway Under - Waterway Code 15 (28) Lanes: On Structure 00 02 Under structure (29) Average Daily Traffic 000154 06 % (30) Year of ADT 2018 (109) Truck ADT 016 KM

From Routine \$ Special Member Inspection Report dated November 1, 2022

PAGE 55 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SHEAR STUDS C-05-027

Shear Connector Fatigue Resistance:

Ref 2 - 6.10.10.2:

If (ADTT) $_{\rm SL}$ >= 1090, use Fatigue I load combination and the fatigue shear resistance for infinite life shall be taken as:

$$Zr = 5.5d^2 = 3.1 k$$

Otherwise, the Fatigue II load combination shall be used and the fatigue shear resistance for finite life shall be taken as:

$$Zr = \alpha d^2 = 6.6 \text{ k}$$

where $\alpha=$ 34.5-4.28 log N

$$\alpha = 34.5 - 4.28 \times 5.33 = 11.68$$

$$ADTT_{SL} = 7.854$$
 < 1090

Therefore
$$Zr = 6.57 \text{ k}$$

PAGE 56 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SHEAR STUDS C-05-027

Required Pitch:

Ref 2 - 6.10.10.1.2, The pitch, p, of shear connectors shall satisfy:

$$p \leq \frac{n \times Z_r}{V_{sr}}$$
 (Ref 2 - Eq. 6.10.10.1.2-1)
 Where
$$V_{sr} = [(V_{fat})^2 + (F_{fat})^2]^{1/2}$$
 (Ref 2 - Eq. 6.10.10.1.2-2)

Ref 2 - 6.10.10.1.2, for straight spans or segments, the radial fatigue shear range from Eq. 6.10.10.1.2-4 may be taken equal to zero.

Ref 2 - 6.10.10.1.2, the center-to-center pitch of shear connectors shall not exceed 24.0 in. and shall not be less than six stud diameters.

Calculate V_{sr} and required p for each beam:

*Fatique Shear Loads taken from BrR

Span = 30.34

Beam I:

$I(in^{-}) =$	2586	(See Section Properties Calc)					
$Q(in^3) =$	150	(See Section P	roperties Calc)				
Point	Distance	$V_{\rm f}$	$V_{sr} = V_{fat} = V_f Q/I$	$p = nZ_r N_{sr}$			
0	0	11.59 k	0.67 k	19.59			
0.1	3.034	11.33 k	0.66 k	20.04			
0.2	6.068	11.07 k	0.64 k	20.52			
0.3	9.102	10.82 k	0.63 k	20.99			
0.4	12.136	10.56 k	0.61 k	21.51			
0.5	15.17	10.41 k	0.60 k	21.82			
0.6	18.204	10.56 k	0.61 k	21.51			
0.7	21.238	10.82 k	0.63 k	20.99			
0.8	24.272	11.07 k	0.64 k	20.52			
0.9	27.306	11.33 k	0.66 k	20.04			
1	30.34	11.59 k	0.67 k	19.59			
	Actual:		Mın:				
	Spacing		Spacing				
	10.00 in	<	19.59	ok			

PAGE 57 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SHEAR STUDS	<u> </u>				C-05-027
Beam 2:					
Span = (in4) = Q (in3) =	24.34 2556 148	(See Section F	Properties Calc) Properties Calc)		
Point O O. I	Distance O 2.434	V _f 16.28 k 15.91 k	$V_{sr} = V_{fat} = V_f Q/I$ 0.94 k 0.92 k	$p = nZ_{p}V_{sr}$ 13.96 14.29	

15.54 k 0.2 4.868 0.90 k 14.63 0.3 7.302 15.18 k 0.88 k 14.97 0.4 9.736 14.81 k 0.86 k 15.35 0.5 12.17 14.72 k 0.85 k 15.44 0.6 14.604 14.81 k 0.86 k 15.35 0.7 17.038 15.18 k 0.88 k 14.97 0.8 19.472 15.54 k 0.90 k 14.63 0.9 21.906 15.91 k 0.92 k 14.29 24.34 16.28 k 0.94 k 13.96 1

 Actual:
 Min:

 Spacing
 Spacing

 10.00 in

 13.96

Beam 3-7:

 $\begin{array}{lll} \text{Span} = & 21 \\ \text{I (in}^4) = & 2094 & \text{(See Section Properties Calc)} \\ \text{Q (in}^3) = & 123 & \text{(See Section Properties Calc)} \end{array}$

*To be conservative, using the fatigue DF from Beam 3 as it is slightly higher than Beams 4-7

Point	Distance	V_{f}	$V_{sr} = V_{fat} = V_f Q/I$	$p = nZ_r/V_{sr}$
0	0	15.91 k	0.93 k	14.10
0.1	2.1	15.55 k	0.91 k	14.43
0.2	4.2	15.18 k	0.89 k	14.78
0.3	6.3	14.81 k	0.87 k	15.15
0.4	8.4	14.69 k	0.86 k	15.27
0.5	10.5	14.68 k	0.86 k	15.28
0.6	12.6	14.69 k	0.86 k	15.27
0.7	14.7	14.81 k	0.87 k	15.15
0.8	16.8	15.18 k	0.89 k	14.78
0.9	18.9	15.55 k	0.91 k	14.43
1	21	15.91 k	0.93 k	14.10
	Actual:		Mın:	
	Spacing		Spacing	
	10.00 in	<	14.10	ok

PAGE 58 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SHEAR STUDS	C-05-027
-------------	----------

Beam 8:

Span =	21			
$I(in^4) =$	2265	(See Section P	roperties Calc)	
$Q(1n^3) =$	131	(See Section P	roperties Calc)	
			•	
Point	Distance	V_{f}	$V_{sr} = V_{fat} = V_f Q/I$	$p = nZ_r/V_{sr}$
0	0	12.13 k	0.71 k	18.49
0.1	2.1	11.85 k	0.69 k	18.93
0.2	4.2	11.57 k	0.68 k	19.39
0.3	6.3	11.29 k	0.66 k	19.87
0.4	8.4	11.20 k	0.66 k	20.03
0.5	10.5	11.20 k	0.66 k	20.03
0.6	12.6	11.20 k	0.66 k	20.03
0.7	14.7	11.29 k	0.66 k	19.87
0.8	16.8	11.57 k	0.68 k	19.39
0.9	18.9	11.85 k	0.69 k	18.93
1	21	12.13 k	0.71 k	18.49
	Actual:		Mın:	
	Spacing		Spacing	
	10.00 in	<	18.49	ok

Shear Connector Strength Resistance:

Calculate shear resistance of single shear stud:

$$Q_{r} = \Phi_{sc}Q_{n} \qquad (Ref \ 2 - Eq. \ 6.10.10.4.1-1)$$

$$\Phi_{sc} = 0.85 \qquad (Ref \ 2 - 6.5.4.2)$$

$$Q_{n} = 0.5A_{sc}\sqrt{f_{c}'E_{c}} \le A_{sc}F_{u} \qquad (Ref \ 2 - Eq. \ 6.10.10.4.3-1)$$

$$Q_{n} = 0.50 \times \times 0.44 \text{ in } 2 \qquad (Ref \ 2 - Eq. \ 6.10.10.4.3-1)$$

$$Q_{n} = 0.50 \times \times 0.44 \text{ in } 2 \qquad \times 0.44 \text{ in } 2 \qquad$$

PAGE 59 OF 68

CALC BY TRS

CHECK BY DCH

DATE OCT 2024

SHEAR STUDS C-05-027

Calculate nominal shear force:

Ref 2 - 6.10.10.4.2, for simple spans and for continuous spans that are noncomposite for negative flexure in the final condition, the total nominal shear force, P, between the point of maximum positive design live load plus impact moment and each adjacent point of zero moment shall be taken as:

$$P = [P_p^2 + F_p^2]^{1/2}$$
 (Ref 2 - Eq. 6.10.10.4.2-1)

In which: P_p is the lesser of

$$P_{1p} = 0.85 f_c b_s t_s \qquad \qquad \text{or} \qquad \qquad P_{2p} = F_{yw} Dt_w + F_{yt} b_{ft} t_{ft} + F_{yc} b_{fc} t_{fc}$$

Per Ref 2 - 6.10.10.4.2, For straight spans or segments, Fp may be taken equal to zero.

	Beam I	Beam 2	Beam 3-7	Beam 8
bs	37.50 ın	36.00 ın	35.38 ın	47.19 m
t_s	8.00 in	8.00 in	8.00 in	8.00 in
D	12.56 in	12.56 m	12.58 m	12.58 m
t_{w}	0.42 ın	0.42 ın	0.37 ın	0.37 ın
b_{ft}	10.00 in	10.00 in	8.06 ın	8.06 in
t_{ft}	0.72 ın	0.72 ın	0.66 in	0.66 in
b_{fc}	10.00 in	10.00 in	8.06 in	8.06 in
t_fc	0.72 m	0.72 ın	0.66 in	0.66 in
P_{1p}	1275.0 k	1224.0 k	1202.8 k	1604.4 k
P_{2p}	647.2 k	647.2 k	504.7 k	504.7 k
$P_p = P$	647.2 k	647.2 k	504.7 k	504.7 k

Calculate number of shear studs required:

Ref 2 - 6.10.10.4.1, at the strength limit state, the minimum number of shear connectors, n, over the region under consideration shall be taken as:

$$n_{Beam1} = \frac{P}{Q_{r}}$$

$$n_{Beam1} = \frac{P}{Q_{r}} = \frac{647.2 \text{ k}}{22.5 \text{ k}} = 29$$

$$n_{Beam2} = \frac{P}{Q_{r}} = \frac{647.2 \text{ k}}{22.5 \text{ k}} = 29$$

$$n_{Beam3-7} = \frac{P}{Q_{r}} = \frac{504.7 \text{ k}}{22.5 \text{ k}} = 23$$

$$n_{Beam8} = \frac{P}{Q_{r}} = \frac{504.7 \text{ k}}{22.5 \text{ k}} = 23$$

The above number of shear studs need to be provided between tenth points O and S and between S and S

PAGE 60 OF 68

CALC BY TRS

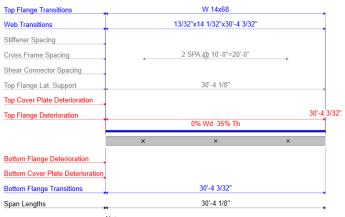
CHECK BY DCH

DATE OCT 2024

SHEAR STUDS	C-05-027

Check Strength Requirement:

Check the number of studs for the full length of the girder to the full length number of shear studs required $\frac{1}{2}$


Beam I				
	# Provided =	74 =	37 x	2
	74	>	58	ok
Beam 2				
	# Provided =	62 =	31 x	2
	62	>	58	ok
Beam 3-7				
	# Provided =	54 =	27 x	2
	54	>	46	ok
Beam 8				
	# Provided =	54 =	27 x	2
	54	>	46	ok

Bridge ID: C-05-027 (LRFD) Name: Charlemont Struct-Def: C-05-027 Member: Member 1

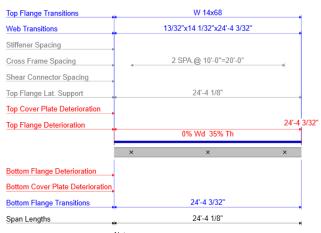
NBI: C-05-027 Member alt: Beam 1 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	52.26	1.452	12.14	1 - (40.0)	SERVICE-II Steel Fle	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	67.94	1.887	12.14	1 - (40.0)	SERVICE-II Steel Fle	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	45.03	1.251	15.17	1 - (50.0)	SERVICE-II Steel Fle	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	58.54	1.626	15.17	1 - (50.0)	SERVICE-II Steel Fle	As Requested	As Requested

C-05-027 (LRFD) Charlemont - C-05-027 - Member 1 South River Road / Albee Brook 11/7/2024

- Notes:
 * All flange length dimensions are horiz. (length along flange may differ).
 * Transverse stiffener pairs shown in red.
 * Single transverse stiffener shown in blue.

- Bearing stiffeners shown in green.
 Dimensioning starts and ends at CL bearings.
- * X denotes cross frame locations.


AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:05:26 PM Print time: 11/2/2024 12:05:42 PM

Bridge ID: C-05-027 (LRFD) Name: Charlemont Struct-Def: C-05-027 Member: Member 2

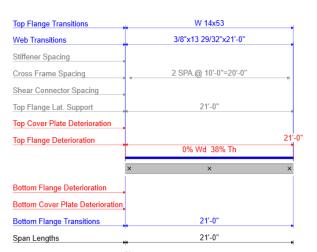
NBI: C-05-027 Member alt: Beam 2 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	53.56	1.488	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	69.44	1.929	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	53.26	1.479	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	69.03	1.918	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

C-05-027 (LRFD) Charlemont - C-05-027 - Member 2 South River Road / Albee Brook 11/7/2024

- Notes:
 * All flange length dimensions are horiz. (length along flange may differ).
 * Transverse stiffener pairs shown in red.
 * Single transverse stiffener shown in blue.

- * Bearing stiffeners shown in green.
 * Dimensioning starts and ends at CL bearings.
- * X denotes cross frame locations.


AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:06:21 PM Print time: 11/2/2024 12:06:33 PM

Bridge ID: C-05-027 (LRFD) Name: Charlemont Struct-Def: C-05-027 Member: Member 3

NBI: C-05-027 Member alt: Beam 3 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	52.04	1.446	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	67.46	1.874	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	49.38	1.372	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	64.01	1.778	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

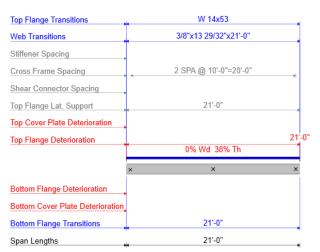
C-05-027 (LRFD) Charlemont - C-05-027 - Member 3 South River Road / Albee Brook 11/7/2024

- Notes:
 * All flange length dimensions are horiz. (length along flange may differ).
 * Transverse stiffener pairs shown in red.

- * Single transverse stiffener shown in blue.

 * Bearing stiffeners shown in green.

 * Dimensioning starts and ends at CL bearings.
- * X denotes cross frame locations.


AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:07:04 PM Print time: 11/2/2024 12:07:23 PM

Name: Charlemont Struct-Def: C-05-027 Bridge ID: C-05-027 (LRFD) Member: Member 4-7 Member alt: Beam 4-7 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	52.18	1.449	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	67.64	1.879	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	49.51	1.375	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	64.18	1.783	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

C-05-027 (LRFD) Charlemont - C-05-027 - Member 4-7 South River Road / Albee Brook

11/7/2024

- Notes:

 * All flange length dimensions are horiz. (length along flange may differ).

 * Transverse stiffener pairs shown in red.

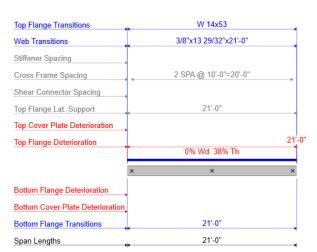
 * Single transverse stiffener shown in blue.

 * Bearing stiffeners shown in green.

 * Dimensioning starts and ends at CL bearings.

- * X denotes cross frame locations.

AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:07:49 PM Print time: 11/2/2024 12:08:03 PM


NBI: C-05-027

Bridge ID: C-05-027 (LRFD) Name: Charlemont Struct-Def: C-05-027 Member: Member 8

NBI: C-05-027 Member alt: Beam 8 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	65.08	1.808	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	84.37	2.344	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	61.76	1.715	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	80.05	2.224	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

C-05-027 (LRFD) Charlemont - C-05-027 - Member 8 South River Road / Albee Brook 11/7/2024

- Notes:

 * All flange length dimensions are horiz. (length along flange may differ).

 * Transverse stiffener pairs shown in red.

 * Single transverse stiffener shown in blue.

 * Bearing stiffeners shown in green.

 * Dimensioning starts and ends at CL bearings.

 * X denotes cross frame locations.

AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:08:34 PM Print time: 11/2/2024 12:08:45 PM

Alternate Load Path Analysis

Rating Results Summary Report

Name: Charlemont Struct-Def: C-05-027 Bridge ID: C-05-027 (LRFD) Member: Member 2 NBI: C-05-027 Member alt: Beam 2 Alt. S=3.5 LLDF

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	51.42	1.428	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	66.66	1.852	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	51.12	1.420	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	66.27	1.841	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

Alternate Load Path Analysis

Rating Results Summary Report

Name: Charlemont Struct-Def: C-05-027 Bridge ID: C-05-027 (LRFD) Member: Member 3 NBI: C-05-027 Member alt: Beam 3 Alt. S=3.5 LLDF

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	49.86	1.385	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	64.63	1.795	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	47.31	1.314	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	61.33	1.704	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

Alternate Load Path Analysis

Rating Results Summary Report

Name: Charlemont Struct-Def: C-05-027 Bridge ID: C-05-027 (LRFD) Member: Member 4-7 NBI: C-05-027 Member alt: Beam 4-7 Alt. S=3.5 LLDF

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	49.88	1.386	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	64.66	1.796	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	47.33	1.315	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	61.35	1.704	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested